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Abstract

For R be a separating algebra of subsets of a set X, E a complete
Hausdorff non-Archimedean locally convex space and m : R — E a
bounded finitely additive measure, we study some of the properties of
the integrals with respect to m of scalar valued functions on X. The con-
cepts of convergence in measure, with respect to m, and of m-measurable
functions are introduced and several results concerning these notions are
given.

1 Preliminaries

Throughout this paper, K will be a complete non-Archimedean valued field,
whose valuation is non-trivial. By a seminorm, on a vector space over K, we
will mean a non-Archimedean seminorm. Similarly, by a locally convex space
we will mean a non-Archimedean locally convex space over K (see [10] or [11]).
For E a locally convex space, we will denote by cs(E) the collection of all
continuous seminorms on E. For X a set, f € KX and A C X, we define

Iflla = sup{|f(2)| : 2 € A} and [ f]| = fllx.

Also for A C X, A¢ will be its complement in X and x4 the K-valued char-
acteristic function of A. The family of all subsets of X will be denoted by
P(X).

Assume next that X is a non-empty set and R a separating algebra of
subsets of X, i.e. R is a family of subsets of X such that

1. XeR,and,if A,BeR ,then AUB, AN B, A€ are also in R.
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2. If z,y are distinct elements of X, then there exists a member of R which
contains z but not y.

Then R is a base for a Hausdorff zero-dimensional topology 7z on X. For F a
locally convex space, we denote by M (R, E) the space of all finitely-additive
measures m : R — E such that m(R) is a bounded subset of E (see [7]). For a
net (V;) of subsets of X, we write V; | 0 if (V;) is decreasing and NV; = 0. An
element m € M(R, E) is said to be o-additive if m(V,,) — 0 for each sequence
(Va) in R which decreases to the empty set. We denote by M,(R,E) the
space of all o-additive members of M(R,E). An m of M(R, E) is said to be
7-additive if m(Vs) — 0 for each net (V) in R with V5 | 0. We will denote by
M- (R, E) the space of all 7-additive members of M (R, E). For m € M (R, E)
and p € cs(E), we define

mp: R =R, my(A) =sup{p(m(V)):V e R,V C A} and |m],=m,(X).
We also define
Nmp: X = R, Npp(z) =inf{m,(V):z € V € R}.

Next we will recall the definition of the integral of an f € KX with respect to
some m € M(R,E). Assume that E is a complete Hausdorff locally convex
space. For A C X, let D4 be the family of all & = {4, As, . . ., Ap; 21, Zo, . .. .
where {4, A;,..., A,} is an R-partition of A and z; € A;,. We make D, into
a directed set by defining a; > o if the partition of A in o is a refine-
ment of the one in ay. For o = {A1, A, ..., Ap; 21,29, ..., 2, }, we define
wa(f,m) = 375 ; f(zx)m(Ax). If the limit limw,(f, m) exists in E, we will
say that f is m-integrable over A and denote this limit by [ 4fdm . For
A = X, we write simply [ fdm. It is easy to see that if f is m-integrable over
X, then it is m-integrable over every A € R and [, fdm = [ xaf dm. If f is

bounded on A, then
p ( / fdm> < [1flla - mp(4).

2 Measurable Sets

Throughout the paper, R will be a separating algebra of subsets of a set X )
E a complete Hausdorff locally convex space and M (R, E) the space of all
bounded E-valued finitely-additive measures on R. We will denote by 7% the
topology on X which has R as a basis. Every member of R is Tr-clopen,
i.e both closed and open. By S(R) we will denote the space of all K-valued
R-simple functions. As in [7], if m € M(R, E), then a subset A of X is said
to be m-measurable if the characteristic function x4 is m-integrable. By [7,
Theorem 4.7], A is measurable iff, for each p € cs(F) and each € > 0, there
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exist V, W in R such that V. C A C W and m,(W \ V) < e.
Let R, be the family of all m-measurable sets. By [7] we have the following

Theorem 2.1 1. Ry, is an algebra of subsets of X.
2. If m:Rp—E, m(A)=[xadm, thenm € M(R,,E).
m s o-additive iff m is o-additive.
m s T-additive iff m is T-additive.
For p € cs(E), we have Npp = Ny, p.
Rm =R
For A € R, we have my(A) = m,(A).

o X ®™ ;A S

For A € R,,, we have
mp(A) = inf{m,(W): W e R,AC W}
9. If f € KX is m-integrable, then f is m-integrable and [ fdm =
[ fam.
10. If f is bounded and m-integrable, then f is m—integrable.

11. An f € KX is m-integrable iff, for each p € cs(F) and each € > 0, there
exists an R-partition {Ay,..., A,} of X such that, for each 1 < k < n,
we have |f(z) — f(y)|- mp(Ar) < € if 2,y € Ay. In this case, if z € Ay,

then
p (/ fdm — Z f(xk)m(Ak)> <e.

12. If m s T-additive, then o subset A of X is measurable iff A is TR, -
clopen.

For m € M(R,E) and p € cs(E), we define
my : P(X) =R, m3(A) =inf{m,(W): AC W € R}.
It is easy to see that

my(A U B) = max{m;(A), m;(B)}.

p

By [7, Theorem 4.10], we have that my(A) = mpy(A) for all A € Ry,.
For p € cs(FE), define

dy: P(X) x P(X) >R, dy(A,B) =mi(AAB),
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where AAB = (A\B) J(B\A). It is easy to see that d, is an ultrapseudometric
on P(X). Let Uy, be the uniformity induced by the family of pseudometrics
dp, p € cs(E).

For A, B in R, we have

p(m(A) —m(B)) < my(AAB) = my(A, B).

Hence m : R — E is Uy-uniformly continuous. Let G,, be the closure of R in

(P(X),Uy). Then m has a unique uniformly continuous extension 7 : G, —
E.

Theorem 2.2 G,, = R,, and m = m.

Proof :  Assume that A € G,, and let p € cs(E) € > 0. There exists V; € R
such that m;(AAV]) < e. Let Wi in R be such that AAV; ¢ W, and my(W1) <
€. Let V=VIiNnWE W =ViUW,. ThenV C AC W. Moreover, W\V = Wy,
and so m,(W \ V) < ¢, which proves that A € R,,,. Conversely, suppose that
A€ Ry and let V, Win R be such that V ¢ A € W and m,(W\V) < e
Since AAV = A\V € W\ V, we have that my(AAV) < mu(W \ V) < ¢,
which proves that A € G,,. Finally, for 4, B in R,,, we have

p(m(A4) —m(B)) = p(m(AAB)) < m,(AAB) = dy(A, B).

Hence m is a Up,-uniformly continuous extension of m and so m = 7. This
completes the proof.

Definition 2.3 If m € M(R,E), then a subset A of X is said to be m-
negligible if m;(A) = 0 for every p € cs(E). A property concerning elements
of X 1s said to be true almost everywhere with respect to m (in short m-a.e)
if the set of all points in X for which it is false is m-negligible.

It is clear that every m-negligible set is measurable.

Theorem 2.4 Let m € M,(R,E) and suppose that R is a o-algebra. Then :

1. A subset B of X is measurable iff, for eachp € cs(E), there are V,W € R
with V.C B CW and my(V) = m,(W) = m;(B), my(W\ V) = 0.
2. Rm s a o-algebra.

3. If E is metrizable, then B is measurable iff there are a V € R and an
m-negligible set A such that B=AUYV.

Proof : 1. Suppose that B s measurable. There are an increasing sequence
(Vz) in R and a decreasing sequence (W,) in R such that V, ¢ B C W,
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and mp,(W, \ Vo) < 1/n. Let V.=UVn, W = (W,. Then V,W € R and
mp,(W\V)=0. Since B=VJ(B\V)C VW \V), we have that

m3(B) = my(B) < max{my(V), my(W \ V)} = my(V) < m2(B)
and so my(B) = m,(V). Analogously we prove that m,(W) = mz(B).
2. Let (Ay) be a sequence in Ry, A =|JA,, p € cs(E) and e > 0. For each
n, there are V,,,W,, € R with V,, C 4, C W,, and my(Wy \ Vo) < €. The sets
V=UVn, W=UW,arein Rand W\V C |J22, W, \ V,, and therefore
mp(W \ V) < sup, m,(W, \ V,) < e. This proves that A € R,,.
3. Suppose that E is metrizable and let (p,) be an increasing sequence of
continuous seminorms on E such that, for each p € cs(E), there exists n with
P < pn. Assume that B is measurable. For each n, there are V,,, W,, € R with
Vo € B C W, and m,,, (Wo \'V,) = 0. Let V = JV,,, W = (\W,. Then
V,W € R. Given p € cs(E), there exists n such that p < p,, and so

mp(WA\V) <my, (W\V) <my, (W, \ V) = 0.

The set A= B\V C W\ V is m-negligible and B = V U A. Hence the result
follows.

Theorem 2.5 Let m € M,R, E), where R is a o-algebra, and let (Ay) be a
sequence of measurable subsets of X which converges to some A in P(X) with
respect to the topology induced by the uniformity U,,. Let

B, =liminf A4,, = U m Ak, By =limsup A4, = ﬂ U Ay.

n k>n n k>n

Then A is measurable and the sets By \ By, AAB; and AAB; are m-negligible.
Moreover A, — B; and A, — B>.

Proof : Since R, is closed in P(X), it follows that A is measurable. Let
p € cs(E) and € > 0. There exists n, such that 7m,(AAA,) < € for all n > n,.
Since

A\By CA\By =[] J A\ 4,

n k>n

we have that

My (A\ By) < my(A\ By) <y, (U (A\Ak)> =

k>n,

up M, (A \ Ax) < e

k>1o
Also

Bl\ACBQ\A:ﬂ<UAk\A) c |\ 4)

n k>n
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and so My (B \ A) < my(Bz \ A) < e. This, being true for each ¢ > 0,
implies that the sets B;AA and By AA are m-negligible. Moreover B;/AB, C
(B1AA) U(B2AA), and so By AB; is m-negligible. Finally,

A,AB; C (A, AA) U (AAB)

and so M, (A AB; < my(AnAA) — 0, which proves that A, — B;. Similarly
An — BQ.

Theorem 2.6 Let m € M,(R, E), where R is a o-algebra, and let f € KX.
Then, f ia m-integrable iff it is M-integrable. Moreover

/fdm:/fdm.

Proof : By Theorem 2.1, if f is m-integrable, then it is also m-integrable
and the two integrals coincide. Conversely, suppose that f is m-integrable
and let p € cs(E) and € > 0. By Theorem 2.1, there exists an R -partition
{A1,..., Az} of X such that, for each k = 1,2,..., we have If(z) — f(y)] -
mp(Ax) < € if 2,y € Ay, In view of Theorem 2.4, there are sets Vi, Wy €
R with Vi C Ay C Wy and my(We \ Vi) = 0, mp(Vi) = my(A;). Let
Vatr = X\ Ug Ve Then Vo € Uiy We \ Vi and so m,(V,yq) = 0.
Now {V1,V%,..., Vat1} is an R-partition of X and, for 0 < k <n+1, we have
|f(z) = f(y)]-mp(Vk) < if z,y € Ay, which proves that f is m-integrable by
Theorem 2.1.

Definition 2.7 Letm € M(R, E) and f € KX. We say that f is m-integrable
over a measurable set A if f- x4 is m-integrable over X. In this case we define

/AfdmszxAdm.

If f is m-integrable, then f is 7m-integrable. Also X4 1s m-integrable and
S0 fxa is m-integrable over X ( by [7, Theorem 4.3), which implies that fxa
1s m-integable. Moreover

/Afdm=/fXAdm:/fXAdm:/Afdm.

Theorem 2.8 Let m € M(R,E) and let f € KX be m-integrable. Then,
gwen € > 0, there ezists 6 > 0 such that p ([, f dm) < € for each A € R,
with my,(A) < 6.

Proof : Since f is m-integrable, there exists W € R such that M\ W) =10
and ||fllw < d < co. Let § = ¢/d and let A € R,, with mp(A) < 6. Then

p</Afdm> :p</Afdm> =p< Aandm) < fllanw - mp(ANW) < e
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Theorem 2.9 Let m € M.(R,E)and let f € KX. Then f is m-integrable iff

1. f is Tr-continuous at every point of the set

G= U {z : Ny p(z) # 0}

p€cs(E)

2. For every p € cs(E), there ezists W € R, with m,(W¢) = 0 and || f||lw <
00.

Proof : The necessity follows from [7, Theorem 4.2].

Conversely, suppose that (1) and (2) hold and let p € cs(E) and € > 0. Let
W € R be such that m,(W¢) = 0 and ||f|lw < d < co. Let ¢; > 0 be such
that e1d < € and €; - [|m|l, < €. The set Y = {z : Ny, () > €} is Tr-compact
(by [7, Theorem 2.6]) and it is contained in W. By (2), f is 7- continuous at
every point of Y. Hence, for each z € Y, there exists V in R contained in W
such that

zeVo C{y:|f(y) - f(2)] < e}

By the compactness of Y, Y is covered by a finite number of the V,, z € Y.
Thus, there are pairwise disjoint members A;, As, ..., A, of R which cover Y
such that Ay C W and each Ay is contained in some V. Let Api = W\U’l1 Ag,
Apyo = We. Then

mp(An+1) = ESEP Nm,p(x) < €
z n+1

( by [7, Corollary 2.3]) and so

|f(z) — fly)|- Myp(Ant1) < dey < €

ifr,y € Appa. If 2,y € Ay, for some k < n, then

|f(z) = f(W)] - mp(Ar) < €1 - my(Ag) < e

Now the result follows by Theorem 2.1.

Theorem 2.10 If f = g m-a.e and g is m-integrable, then f is m-integrable

and
/fdm:/gdm.

Proof :  We will show that f is m-integrable . The set A = {z : f(z) # g(z)}
is m-negligible and hence A € R,. Since g is m-integrable, given ¢ > 0
and p € cs(E), there exists an R-partition {4, 4,, .. ., An} of X such that
lg(z) — g(y)| - mp(Ax) < € if 2,y € Ag. If now {B1,Bs,...,By} is any R,-
partition of X which is a refinement of each of the partitions {A1,As, ... AL}
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and {4, A}, then |f(z) — f(y)|  mp(Bx) < € if z,y € By. Indeed this clearly
holds if B, C A. If By C A, then

|[f(2) = FW)| - mp(Bx) = |g(z) — ()| - mp(B) < e
since each By is contained in some A;. This (in view of Theorem 2.1) implies

that f is mm-integrable and hence m-integrable. By the same Theorem, if
Zx € By, then

p (/fdm - Zf(fck)m(Bk)> <e and p </gdm = Zg(xk)m(Bk)> < e
k=1 k=1

Since, for By C A, we have that m(B, = 0 and f(zx) = g(zx) when By C A°,

it follows that
p</fdm—/gdm> <e.

This, being true for all € > 0 and all p € cs(E), implies that

/fdm:/fdm:/gdm:/gdm,

which completes the proof.

Theorem 2.11 Letm € M, (R, E) and suppose that R is a o-algebra. If (A,)
is a sequence in R, then for each p € cs(E) we have

my(liminf 4,) < liminfm,(A,) < limsup m,(A4,) < m,(limsup 4,,).
Proof : Let By, = iz, Ak, Gn =i, Ak Then
liminf A4,, = U B, and limsupA, = m Gn.
Since m is o-additive, we have m, (liminf A,) = sup,, m,(B,). But

My Br) < gf myp(Ax) < liminf my,(A,).

Thus
myp(liminf A,) < liminfm,(A4,).

Analogously we prove that
lim sup m,(A4,) < m,(limsup A,)

and hence‘the result follows.
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Corollary 2.12 Let m € M,(R, E), where R is a o-algebra, and let (A,) be
a sequence 1 R such that

liminf A,, = limsup A, = A.
Then, for each p € cs(E), we have that m,(A,) — m,(A).

Theorem 2.13 Let m € M(R,E) and let f € KX be m-integrable. Ifp €
cs(E) a> 0 ad € > 0, then there exists g € S(R) such that

my({z: |f(z) — g(z)| 2 o}) < e

Proof - Since f is m-integrable, there exists an R-partition {4, Ay, ..., A,}
of X such that |f(z) — f(y)| - mp(Ar) < ea if z,y € A;. Let z, € Ay,
9= 1 f(@e)xa, and G={z: |f(z) — g(z) > a}. If z € G N A, then

ea > |f(z) = f(ze)] - mp(Ak) 2 a - my(Ar)

and thus m,(A) < e. The set
W= J{4r: AnG #0}
contains G and so ms(G) < my(W) < e.

Theorem 2.14 Let m € M(R, E) and let f € KX be m-integrable. Then, for
each o > 0, the sets

Ai={z:|f(@)2a}, Ar={z:|f(z)|>a}, As={z:|f(z)| <o}
As={z:|f(2)| <o} and As={z:|f(z)| =0}

are m-measurable.

Proof :  Let p € cs(E) and € > 0. By the preceding Theorem, there exists
W e R and g € S(R) such that m,(W) < e and {z : |f(z) — g(z)| > o} C W.
Let g = ) p_1 AXB,, where By, ..., B, are disjoint members of R. Let B =
{Bk . I>‘k| > O{}. Then

Bnwec{z:|f(z)|>a} Cc WUB.

Indeed, let z € BN W* and assume that |f(z)| < o Since z € B, we
have |g(z)| > a and so |g(z) — f(z)| = |g(x)] > a, a contradiction. Hence
BNW® C A;. Also, ify ¢ WUB, then |f(y) — g(y)| < @ and |g(y)| < e, which
implies that |f(y)| < o. Thus 4; C BUW. Moreover (WUB)\(BNW*®) = W
and m,(W) < e. This proves that A; is m-measurable. In an analogous way
we prove that A, is measurable. Finally the sets A3 = A5, Ay = A, and
As = A; \ Ay are measurable.
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3 Measurable Functions

Definition 3.1 If m € M(R, E), then a function f € K* is said to be m-
measurable, or just measurable if no confusion is possible to arise, if f~1(A) €
R for each clopen subset A of K.

We have the following two easily verified Lemmas.
Lemma 3.2 A subset A of X is measurable iff x4 is measurable.
Lemma 3.3 Let A be a closed subset of K and let

wa:K—=R, wy(z)=inf|z—y|
yeA

Then :
1. For z,y € K, we have wa(z) < max{|z — y|,wa(y)}.
2. For each o > 0, the sets
{z:walz) <o}, {z:walz) <a} {z:wale) >0}, {z:walz)>a}
are clopen.

Theorem 3.4 Let m € M(R, E), where R is a o-algebra, and let f € KX,
The following are equivalent : -

1. For each Borel subset B of K, the set f~'(B) is measurable.
2. f7Y(A) is measurable for each closed subset A of K.

8. f7'(A) is measurable for each open subset A of K.

4. f is measurable.

Proof : It is clear that (2) is equivalent to (3) and that (1) = (2) = (4). Also,
(3) = (1) since the family of all subsets A of K for which 7Y A) e Ry is a
o-algebra because R,, is a o-algebra. Finally, (4) implies (2). Indeed assume
that f is measurable and let A be a closed subset of K. Let w4 be as in the
preceding Lemma. Since A is closed, we have that A = {s € K : wy(s) = 0}.
Let Ap = {s : wa(s) < 1/n}. Each A, is clopen and thus B, = f~1(4,) is
measurable. Since f~!(A) = ) B,, the result clearly follows.

Theorem 3.5 Let m € M(R, E) and let f € KX be m-measurable. Then :
1. If ¢ : K — K is continuous, then the function ¢ o f is measurable.

2. For each g € S(Ry,), the functions hy = gf and hy = g+ f are measur-
able.
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Proof : 1). It follows from the fact that ¢~*(A) is clopen in K for each clopen
A.

2). There exists an R,,-partition {A;,..., A,} of X, and \; in K such that
9= > % 1 MXdp, A =0, A # 0 for k < n ( we may have A, = ). Now, for
A clopen subset of K, we have

By (4] = O RTH(A) N Ay.

If K < n, then
A A) N A= A [F10514)] .

Also
hi'(A) N A, € {A,, 0}.

Hence each hi'(A4) N A is measurable and so h7'(A) is measurable, which
proves that hA; is measurable. To prove that h, is measurable, it suffices to
show that, for G € R, and A € K, the function h = f 4+ Axs is measurable.
For such an h and A clopen subset of K, we have

A = [Gnf =+ 4] [eenf14)],
and the result follows.
Theorem 3.6 Let m € M,.(R,E). Then :
1. An f € K* is measurable iff it is T, -continuous.
2. If f,g are measurable, then f + g and fg are measurable.
Proof : 1). It follows from the fact that, when m is 7-additive, a subset of X
is in R, iff it is 7%, -clopen.

2). It is a consequence of (1) since the sum and the product of two continuous
functions are continuous.

Theorem 3.7 Let m € M(R,E) and let f,g € KX with f = g m-a.e. If g is
measurable, then f also is measurable.

Proof : The set G = {z : f(z) # g(z)} is negligible and hence measurable.
For A a clopen subset of K, we have

A =[@ncUlr@ne] = [ n6J '@ ne.

Since f~'(A) NG is negligible and hence measurable, the result follows.

29
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Theorem 3.8 Letm € M (R, E), where R is a o-algebra. If f, g are measur-
able functions and A € K, then the sets

Gi={z:[f(@)] > 9@}, G2={z:|f(z)| > |g(z)]},
Gs={z:|f(@)|=lg(=)[}, Ga={z:f(z) =2}
are measurable.

Proof : For each rational number r, the set
Fr={z: 1f@) > 1} Yz 2 lo@)] <}
is measurable. Since R is a o-algebra, R, is also a o-algebra and thus the set
Gi= U{FT :r >0, r rational}

is measurable. Analogously the set B = {z : |g(z)| > |f(z)|} is measurable
and so G = B° is measurable. Also G3 = G, \ G, is measurable. Finally the
function A = f — X is measurable, by Theorem 3.5, and so the set

Gyg = ﬂ{a: :h(z)| < 1/n}

is measurable.

Theorem 3.9 Let m € M(R,E) and let f € KX be measurable. Then f is
TR, -CONtINUOUS at every point of the set

Z= |J {z: Npp(z)#0}.

pEcs(E)

Proof : Let Npp(z) =d > 0andlete > 0. Theset G = {z: |f(y)—f(z)| < €}
1s measurable. Hence, there are VW € R such that V ¢ G c W and
my(W \ V) < d. Since z € W and Npp(z) > my(W \ V), it follows that
z € V C G, which proves that f is continuous at z.

Corollary 3.10 Let m € M,(R,E) and let f € KX be measurable. If there
ezxists an integrable function g such that |f| < |g|, then f is integrable.

Proof : Given p € cs(E), there exists W € R such that ||g|lw < oo and
my(W€) = 0. By the preceding Theorem and the Theorem 2.9, f is -
integrable and so f is m-integrable.

Theorem 3.11 Let m € M(R, E), where R is a o-algebra, and let (f,) be a
sequence of measurable functions which converges to some f m-almost every-
where. Then f is measurable.
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Proof :  Let A be a clopen subset of K and let B, = f;*(A). The set
B = liminf B, is in R,, since R, since is a o-algebra. Let Z = {z : f(z) =
lim f,(z)}. Then Z¢is m-negligible and hence measurable. Moreover, f~1(A)N
Z = BN Z. Indeed, let z € f~1(A) N Z. Since lim f,(z) = f(z) € A, there
exists a k such that

z € ()5 Brn C B. Conversely, if z € BN Z, then there exists a k such
that £ € (,>5 Bn, and so fn(z) € A for all'n > k. Since A is closed and
fn(z) = f(z), it follows that f(z) € Aandso z € f~'(4)NZ. Now BN Z is
measurable and

) =BnzIl i nz.

As f71(A) N Z¢ is negligible, it is measurable and so f~(A) is measurable.
Hence the result follows.

Theorem 3.12 (Egoroff’s Theorem) Let m € M, (R, E), where R is a o-
algebra, and let (fn) be a sequence of measurable functions which converges
m-a.e to some f. Then for each € > 0 and each p € cs(E), there exists A € R,
with my(A°) < €, such that f, — f uniformly on A.

Proof :  Let G be an m-negligible set such that f,(z) — f(z) for all z € G¢
and let p € cs(E) and € > 0. By the preceding Theorem, f is measurable.
Claim. For each § > 0, there exist B € R, with m,(B°) < ¢, and an integer
N such that |fn(z) — f(z)] <6 for all z € B and all n > N. In fact, let

An={z € X : |fa(z) - f(2)| 2 6}(|G° and Dy = | 4n.

n>N

Since m is T-additive, each f, — f is measurable (by Theorem 3.4) and so A,
is measurable, which implies that Dy is measurable since R is a o-algebra.
Moreover Dy | 0 since fn(z) — f(z) for all z € G°. As 1 is o-additive, there
exists an N such that m,(Dy UG) = m,(Dy) < e. There are V,W € R such
that V. C Dy UG C W and m,(W \ V) < e. Now

my(W) = max{m,(V), m,(W \ V)} < max{m,(Dy UG), e} = .

Taking B = W, we see that if z € B, then z ¢ Dy UG and so z ¢ A, for
each n > N, ie |fo(x) — f(z)| < 6. Thus the claim follows.

By our claim, there are n; < ny < ..., and sets B, € R, with myp(Br) < € and
|fn — f(z)| < 1/k for all z ¢ By and all n > ny. For A = U By, we have that
my(A) = sup, my(Bg) < e. Moreover, f, — f uniformly on A®. In fact, given
0 >0, choose k > 1/4. If z € A° C Bg, we have |f,(z) — f(z)] < 1/k < 6 for
all n > ny. This completes the proof.

Theorem 3.13 Let m € M(R, E), where E 1s metrizable, and let (f,) be a
sequence in KX and f € KX. If, for each p € cs(E) and each € > 0, there

exists an A in R, with my(A) < €, such that (f,) converges uniformly to f on
Al then fn(z) = f(z) m-a.e

31
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Proof :  Let (pn,) be an increasing sequence of continuous seminorms on E
such that, for each p € cs(E), there exists an n with p < p,,. For each k, there
exists Ay € R, with myp, (4;) < 1/k, such that f, — f uniformly on A¢. Let
A = (A and let p € cs(E). Choose k such that p < p;. Then, for each
n > k, we have :

m,(A) < my(An) <myp,(A4,) <1/n—0,

and hence A is negligible. Moreover, f,(z) — f(z) for all z € A°.

4 Convergence in Measure
Let m € M(R, E).

Definition 4.1 A net (gs) in K* converges in measure, with respect to m, to
some f € KX if, for each p € cs(E) and each a > 0, we have

limm, ({z : |gs() — f(z)] 2 a}) = 0.

Theorem 4.2 Let m € M, (R, E), where R is a o-algebra, and let (f,) be
a sequence in KX which converges in measure to both fandg. Then f =g
m-a.e.

Proof : For each positive integer k, let
Ank = {2 : [falz) = f(@)| 2 1/k}, Bux = {z: |g(z) — fu(z)| > 1/K},

Ge=A{z:|f(z) — g(z)| > 1/k}.
Then Gy C Anx |J Bni and so

m,(Gi) < max{m;(Ank), My (Bnk)},

for all n. It follows that m;}(Gy) = 0 for all p € cs(E), and so Gy, is negligible.
Since m is o-additive and R a o-algebra, it follows that the set

G={z: f(x) #9(=)} = JC:
1s negligible, and thus f = g m-a.e
Theorem 4.3 Let m € M(R,E) and f € KX. Then, f is m-integrable iff
1. There erists a net (gs) in S(R) which converges in measure to F

2. For each p € cs(E) there exists a W € R, with m,(W¢) = 0, such that
f s bounded on W.
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Proof :  Assume that f is integrable. Then (2) holds by Theorem 2.1. To
prove (1), we consider the set A = {(n,p) : n € N,p € cs(F)}. We make A
into a directed set by defining (n1,p1 > (ng, p2) iff ny > ny and p; > ps.

Claim: For each ¢ = (n,p), there exist hs € S(R) and G5 € R such that
mp(Gs) <1/n and As={z:|hs(z) — f(z)| > 1/n} C Gs.

Moreover, we can choose hs so that hs(X) C f(X).

Indeed, there exists an R-partition {Bi,..., By} of X such that , for each
1 <k <N, we have |f(z) — f(y)| - mp(Bx) < 1/n? if 2,y € By. Choose
Zx € By and set g5 = chv:l f(zk)xs,- Let

As={z: |hs(z) = f(z)| 2 1/n} and Gs=|J{Bx:ByNA; # 0}.
If z € By N Ags, then
1/n? > |f(z) — f(zx)] - mp(B) > 1/n - my(By),

and so my(Bx) < 1/n. It follows that m,(Gs) < 1/n and clearly A5 C Gs.
This proves the claim. Now hs — f in measure. In fact, let p, € cs(E), a > 0
and € > 0. Choose n, > 1/a,1/e. For § = (n,p) > 6, = (n,,p,), let

Zs ={z : |gs(z) — f(z)] > a}.

Then Zs C As C G5 and so m;(Z5) < my(Gs) < 1/n < e. This proves that
hs — f in measure.

Conversely, suppose that (1) and (2) hold and let p € cs(E) and € > 0. By
(2), there exists W € R, with m,(W¢) = 0, such that ||f||w < d < co. Let
(95) be a net in S(R) which converges in measure to f. Choose o > 0 such
that o - my(X) < e. There exists a d, such that mZ(Zs,) < e/d, where

Zs, = {2 : 195,(z) — f(z)| 2 a}.

There exist an R-partition {W1,..., Wy} of X and ); € K such that g5, =
SN Xixw,. Thereisa V € R containing Zs, such that m,(V) < e/d. Let
{V1,...,V,} be any R-partition of X, which is a refinement of each of the
partitions {W1,..., Wy}, {W,W¢}, and {V,V°}. Let 1 <i<nand z,y € V..
We will prove that

|f(z) = f)] - mp(Vi) < e
This is clearly true if V; C W¢. So, assume that V; C W. If V; C V, then
|f(z) = f(y)] - mp(Vi) < d-mp(V) <e.
Finally, if V; C V¢, then (since g5, (x) = gs, (y) as z,y are in some W;) we have
£ (z) = f(W)| < max{|f(z) - g5, ()|, lgs,(¥) — fFW)|} < @
and so
|F(2) = FW)- mp(Vi) < - myp(X) <e.
Now the result follows from Theorem 2.1.
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Theorem 4.4 Let m € M(R,E) and let (g5)sen be a net in KX which con-
verges in measure to some f. If E is metrizable, then there exist §; < 65 < ...
such that the sequence (gs,) converges in measure to f.

Proof : Let (pn) be an increasing sequence of continuous seminorms on E
such that, for each p € cs(E), there exists an n with p < p,. There is an
increasing sequence (d,,) in A such that

m,, ({2 :1gs(z) — f(2)| > 1/n}) < 1/n

for all § > 6,,. Let h, = gs,. Then h, — f in measure. Indeed, let p € cs(E),
a >0 and € > 0. Choose n, > 1/a,1/e with p,, > p. Then, for n > n,, we
have

Mp({z 2 [hn(2) — f(2)] 2 o}) < my({z : |ha(z) = f(2)| > 1/n})
<my ({z:|ha(z) — f(z)| > 1/n}) < 1/n<e

Thus h, — f in measure and the result follows.

Corollary 4.5 If f € KX is m-integrable and E metrizable, then there exists

a sequence (g,) in S(R) which converges in measure to f. Moreover, we can
choose (gn) so that g,(X) C f(X) for all n.

Theorem 4.6 Let m € M,(R, E), where E is metrizable, and consider on X
the topology Tr. Let (f,) be a sequence in KX which converges in measure to
some f. Then, there ezist a subsequence (fn,) and an F, set F such that F is
a support set for m and f,, — f pointwise on F. If R is a o-algebra, then we
may choose F' to be in R.

Proof : Let (p,) be an increasing sequence of continuous seminorms on E such
that, for each p € cs(E), there exists an n with p < p,. Choose inductively
n1 < ng < ... such that

My ({2 2 | fn(z) = f(2)] 2 1/k}) < 1/k

for all n > ny. Let

Ar ={z : |falz) — f(2)| = 1/k}
and let Vi € R, containing Ay, such that m,, (Vi) < 1/k. Set

A= UV F=x\4
N=1k>N
Then F'is an F, set and F € R if R is a o-algebra. If V € R is contained in
A, then py(m(V)) = 0 for all k. Indeed, for all N, we have V C Ussx Vi- So,
if N > k, then -

My, (V) < sup My, (Vi) < sup myp, (Vi) < 1/N
i>N i>N
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and so my, (V) = 0. This proves that F' is a support set for m. Finally, let
z € F' and let N, be such that z ¢ {J;5 5 Vi. For k > N,, we have z ¢ V; and
S0 | fn, (z) — f(z)] < 1/k — 0. This clearly completes the proof.

Theorem 4.7 Let m € M,(R, E), where E is metrizable and R a o-algebra.
If f is m-integrable, then f is m-measurable.

Proof : By Corollary 4.5, there exists a sequence (g,) in S(R) which converges
in measure to f. In view of the preceding Theorem, there exist a subsequence
(gn,) and a set F' € R such that F is a support set for m and On, = f
pointwise on F'. Since each g,, is measurable, it follows that f is measurable
by Theorem 3.11.

Theorem 4.8 Let m € M,(R, E), where E is metrizable and R a o-algebra.
If a sequence (fn) of measurable functions converges in measure to some f,
then f is measurable.

Proof : By Theorem 4.6 there exist a se subsequence ( fn,) and a set F € R
such that F' is a support set for m and f,, — f pointwise on F. Now the
result follows from Theorem 3.11.

Theorem 4.9 Let m € M;(R,E), p € cs(E) and € > 0. Then :

1. If f € K* is measurable, then there ezists a d > 0 such that
my({z : |f(z)] > d}) <e.

2. If (gn) is a sequence of measurable functions which COMUVETges in Mmeasure
to some g, then there ezists o > 0 such that m}({z : |g(z)| > a}) < e.

Proof : 1). Let V, ={z : |f(z)| > n}. Then V,, € R,, and V, | 0. Since m is
o-additive, there exists an n such that m:(V},) < e.

2). Let Ay = {2 : |gn(z) —g(z)| > 1}. There exists an n such that my(An) < €.
By (1), there exists a > 1 sauch that, if B = {z : |g,(z)| > o}, then my(B) <
e If A={z:|g(z)| > a}, then A C BU A, and so

my,(A) < max{m;(B),m;(A4n)} < e.

Theorem 4.10 Let m € M, (R, E) and let (f,) and (gn) be two sequences of
measurable functions which converge in measure to f, g, respectively. Then
fan+ 90— f+ g and frg, — fg in measure.

Proof : It is easy to see that (f, + g,) converges in measure to f+g To
prove that the sequence (f,gn) converges in measure to fg, we first prove that
frng — fg in measure. Indeed, let p € cs(E), @ > 0 and € > 0. By the
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preceding Theorem, there exists a d > 0 such that, if A = {z : |g(z)| > d},
then m;(A4) < e. Let

An =1z : |fn(2)9(2)(=f(2)9(z)| = o}, Bn={z:|fulz) - f(2)| > o/d}.

Then A, C B, U A. There exists an n, such that ms(Bp) < € for n > n,.
Thus, for n > n,, we have

my(An) < max{m;(Bn), m;(A)} <e,

which proves our claim.
Next we show that f? — f? (and analogously g> — ¢%) in measure. Indeed let
hn = fn — f. Then h, — 0 in measure. Since, for o > 0, we have

{z: [ha(@)] > a} = {2 : |hn(2)] = &M?},

it follows that h2 — 0 in measure. Now f2 — f2 = A2 + 2(f,f — f%) = O in
measure and so f2 — f? in measure.
Next we observe that

(ot 9n)(f+9) = fof + guf + fag + gng = f2+2fg+ ¢°

in measure. If ¢, = (fn+9gn) — (f +9), then ¢, — 0 in measure and so ¢ — 0
in measure. Now

(fnt90) = (f+ 92 =2 +2[(fat9)(f+9) — (F+9))] = 0

in measure. Finally,

(f+9)° = =g = fg

N

fngn = % [(fn i gn)z - fv% - 9721} —

in measure. Hence the result follows.

Theorem 4.11 Letm € M,(R, E), where E is metrizable and R a o-algebra.
Let f,g € K* be such that f is m-integrable and g9 m-measurable. Then f+ g
and gf are m-measurable.

Proof : By Corollary 4.5, there exists a sequence (hn) of R-simple functions
which converges in measure to f. In view of the preceding Theorem, the se-
quence (h,g) converges in measure to fg. Each hng is measurable by Theorem
3.5. Hence fg is measurable by Theorem 4.8. The same Theorem implies
that f + g is measurable since h, + g — f + g in measure and each h,, + g is
measurable by Theorem 3.5.

Theorem 4.12 Let m € M,(R,E) and let (fs)sen be a net in KX which
converges in measure to some f. Then, there exists a support set F' for m and
a subnet of (fs) which converges to f pointwise on F.
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Proof : Let 2 = {(6,p,k) : 6 € A,p € ¢s(E),k € N} and make = into a
directed set by defining (8, p, k) > (01,p1,k1) if 6 > 61, p > p; and k& > k.
Let £ = (8, p, k). There exists §; = (£) > § such that

my({z : |fa(z) — f(2)| =2 1/k}) < 1/k.

In this way we get a subnet (fy(e))eez of (f5). Let
Ge={z: |fype(2) — f(z)| > 1/k}

and choose W¢ € R containing G¢ and such that m,(W;) < 1/k. Let

A=UwWe, F=Xx\4

EEEE>E

Then : 1. fye)(z) = f(z) for all z € F. In fact, let z € F. There exists a
&1 = (01, p1, k1) such that Now, for £ = (6, p, k) > &, we have

|foe)(z) — f(z)| <1/k—0 as k— oo.

Thus f¢(§) (IB) — f(l‘)
2. F is a support set for m. Indeed, Let W € R be contained in A and let

&0 = (00, D0, ko) € Z. Then W C Ugse, Wer- Since m is 7-additive, we have

My, (W) < sup my, (Wy).
g6

But, for ¢ = (4,p, k) > &,, we have
My, (Wer) < myp(Wer) < 1/k < 1/k,.

It follows that m,, (W) = 0 for all p, € cs(E), which proves that F is a support
set for m. This completes the proof.

Theorem 4.13 (Dominated Convergence Theorem) Let m € M, (R, E),
where R 1s a o-algebra and E metrizable, and let (f,) be a sequence of inte-
grable functions which converges m-a.e to some f. If there exists an integrable
function g such that |f,| < |g| for all n, then f is integrable and

/fdmzlim/fndm.

Proof : Let p € cs(E) and € > 0. Since g is integrable, there exists a W € R
such that m,(W*) = 0 and ||g|lw < d < co. Each £, is measurable by Theorem
4.7. By Egorofl’s Theorem, there exists A € R, with m,(A°) < ¢/d, such that
fn — [ uniformly on A. Also, there exists an m-negligible set B such that
fn(z) — f(z) for all z € Be. Clearly |f| < |g| on B¢. For each k, there exists
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B, € R with B C By and m,(Bx) < 1/k. The set F = (B is in R and
my(F) = 0. Since f, — f uniformly on A, there exists n, such that

[fn = flla < min{e/d, ¢/|Iml,}.

for all n > n,. Let now n > n,. Since f, is integrable, there exists an R-
partition {4;,..., Ay} of X, which is a refinement of each of the partitions
{F, Fe}, {W,We¢}, {A, A%}, such that, for all 1 < k& < N, we have | fn(z) —
o) - mp(Ax) < € if 2,y € Ay Now, if 2,y € A4, then |f(z) — f(y)] -
mp(Ax) < e. In fact, this is clearly true if Ay C W€ or A, C F. So assume
that Ay C F°NW. Then, for z,y € A;, we have

lf(x) - f(y)) 5 maX{lf(m) - fn(x”v Ifn(x) - fn(y)” |fn(y) - f(y)l}

It follows from this that |f(x) — f(y)| - my(A4x) < e. This proves that f is
m-integrable. Moreover, if 2, € A, then

P (/fdm - Zf(a:k)m(Ak)> , D </ fndm — an(xk)m(Ak)> L6

Also, for 1 < k < N, we have |f(zx) — fu(zk)| - (m(Ax) < €. Indeed, this is
clearly true if A C W€ or Ay, C F. So assume that A, C FenW. If Ap C A,
then

|f (@) = fu(ze)| - p(m(Ax) < |If = falla - [Imll, <,
while for Ay C A¢, we have
|f (@) = falzi)| - p(m(Ar < d-mp(A°) <.

It follows from the above that

p(/fdm—/fndm>§6
/fdm:hm/fndm.

Theorem 4.14 Letm € M,(R, E), where E is metrizable and R a o-algebra,
and let f € KX. Then, f is m-integrable iff it is measurable (equivalently
TR, -cONtinuous) and, for each p € cs(E), there exists a W € R such that
my(We) =0 and f is bounded on W.

for alll n > n,. Thus

Proof :  The necessity follows from Theorems 4.7 and 2.1. Conversely, suppose
that the condition is satisfied. We will show that f is 7-integrable and hence
m-integrable. Let p € cs(E), e > 0 and let W € R be such that f is bounded
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on W and m,(W¢) = 0. Let f; = f - xw. Since f is measurable, it is 7z, -
continuous (by theorem 3.6) and so f; is 7-integrable by [7, Theorem 4.11].
Hence there exists a Rp-partition {Ai,...,A,} of X such that, for all 1 <
k < n, we have | fi(z) — f1(y)|-mp(Ar) < eifz,y € Ay. Let now {By,..., By}
be any R-partition of X which is a refinement of both {4,,...,4,} and
{W,We}. Then, for 1 <k < N and z,y € By, we have | f(z)— f(y)| - mp(B) <
€. Indeed, this clearly holds if B, C W¢. Suppose that By C W. Then f = f;
on By and so |f(z) — f(y)| - m,(Bk) < € since By is contained in some A;. Now
the result follows.

Theorem 4.15 Let m € M,(R,E), where R is a o-algebra, and let (f,) be
a sequence of measurable functions which converges m-a.e. to some f. Then
fn = f in measure and f is measurable,

Proof : Letp € cs(E), a > 0and A, = {z : |fu(z)— f(z)| > o}. Given e > 0,
there exists (by Egoroff’s Theorem) a set A € R, with m,(A°) < ¢, such that
fn — f uniformly on A. Hence, there exists an n, such that || f, — f||4 < a for
all n > n,. Now, for n > n,, we have A, C A° and so mj}(A) < m,(A4°) < e
Hence f, — f in measure. Also f is measurable by Theorem gl 1

Theorem 4.16 m € M. (R,E) and let f € KX be measurable. Then, there
exists a net (g5) in S(R) which converges in measure to f. In case E is
metrizable, there exists a sequence (hy) in S(R) converging to f in measure.

Proof :  We prove first the following

Claim : For each € > 0 and each p € cs(E), there exist A € R, with my(A°) <
€, and g € S(R) such that ||f — g[la < e. In fact, consider the equivalence
relation ~ on X, z ~ y iff | f(z) — f(y)| < e. Let (B;)ie; be the family of all
equivalence classes and let z; € B;. Then B; = {z : |f(z) — f(z;)| < €} and so
B; is measurable since f is measurable. For J C [ finite, let G; = ({,.; Bi)*.
Then G is measurable and G | 0. Since m is 7-additive, there exists a J =
{i1,...,4n} such that m,(G;) < e. For 1 < r < n, there are V., W, € R such
that V C B, CW, and my(W, \V;) <e. Lety, € V,and g =S »_, f(v:)xw

If A=J"_, V,, then

= ﬁVrCCGJU (OWT\VT) :
Thus,
myp(A°) = my(A°) < max {m,(Gy), my(W1 \ V1), ..., m,(Wo \ Vo) } <.

Moreover, if z € A, then z € V;, for some 7, and so |f(z) — g(z)| = |f(z) —
f(yr)| < e thus ||f — g|la < € and the claim follows.
Let now A = {(n,p) : n € N,p € cs(E)}. For § = (n,p) € A, there exist a
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function gs € S(R) and a set G5 € R such that m,(G§) < 1/nand ||g—gs||g, <
1/n. Then g; — f in measure. Indeed, let p, € cs(E) and o, e > 0. Choose
no > 1/a,1/e and set 6, = (ny,p,). If 6 = (n,p) > &,, then

mp, ({Z 1 19s(z) — f(2)| 2 o} < Mmp({z - |gs(z) — F(z)| > o}
< myp({z 1 |gs(z) - f(z)] > 1/n}
<my(G§) <1/n<e.

This proves that gs — f in measure. The last part of the Theorem follows
from Theorem 4.4.

Corollary 4.17 Letm € M, (R, E), where E is metrizable and R a o-algebra,
and let f € KX. Then f is medasurable iff there ezists a sequence (hn) 1n S(R)
converging in measure to f.

Proof : The necessity follows from the preceding Theorem. Conversely let
(hn) in S(R) converging in measure to f. By Theorem 4.6, there exist a
subsequence (hy,) and F' € R such that F is a support set for m and By, ~+
pointwise on F'. Hence f is measurable by Theorem 3.11.

Theorem 4.18 (Lusin’s Theorem) Let m € M,(R, E), where E is metriz-
able and R a o-algebra, and let f € KX. Then f is measurable iff, for each
p € cs(E) and each € > 0, there ezist A € R, with m,(A°) < ¢, and a T-
continuous function g such that f(z) = g(z) for allz € A.

Proof : Suppose that f is measurable and let p € cs(E), € > 0. By the
preceding Corollary, there exists a sequence (h,) in S (R) which converges in
measure to f. Each h, is measurable. By theorem 4.6 there exist a subsequence
(9x) = (hn,) and F € R such that F is a support set for m and g — f
pointwise on F'. By Egoroff’s Theorem, there exists A € R, with mp(A°) < e,
such that gr — f uniformly on A. Since A is 7g-open and each gk 1S Tr-
continuous, it follows that f is 7z-continuous at every point of A. If g=xaif,
then g is 7z-continuous and g = f on A. Conversely, suppose that the condition
is satisfied and let B be a clopen subset of K and p € cs(E). We need to show
that f~'(B) € R,,. For each positive integer k, there exist Ay € R, with
myp(Ag) < 1/k, and a Tr-continuous function uy such that ug = f on Ag. Let

A=|J4A, F=f'B)n4, G=jfYB)n4"
k

Then
F=Jr'®Bn4=Ju'(B)N A
k=1

k=1
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Since uy is Tr-continuous ( and hence 7, -continuous), it follows that uy is
m-measurable and so F' € Rp,. Moreover, G C A¢, for each k, and so

FYUB)AF =G C A,

which implies that d,(f~*(B),F) < m,(A$) < 1/k — 0. This proves that
f~1(B) belongs to the closure of R,, in P(X) and hence f~!(B) € R,,. This
completes the proof.

Definition 4.19 Let m € M(R,E). A sequence (f,) in KX is said to be
Cauchy in measure if, for each p € cs(E) and each a > 0, we have

lim mi({z: |fale) - £(z)] > a}) =0.

n,7—00
We have the following easily verified
Lemma 4.20 If f, — f in measure, then (f,) is Cauchy in measure.

Theorem 4.21 Let m € M,(R, E) and suppose that E is metrizablre and R
a o-algebra. If (f,) is a sequence of measurable functions which is Cauchy in
measure, then there ezists an f such that f, — f in measure.

Proof :  Let (p,) be an increasing sequence of continuous seminorms on E such
that, for each p € cs(F), the exists an n with p < p,. There are n; < ny < ...
such that

My, ({2 2 |fnlz) = fr(2)] > 1/k}) < 1/k

for all n,r > ny. Let hy = f,,, and let A, € R such that My, (Ax) < 1/k and
{z ¢ |he(2) = higa(z)] > 1/k} C A
Let F}, = UiZk A;. Then Fj, € R and
My, (Fi) = sup my, (4;) < supm,, (A4;) < 1/k.

>k >k
On each X \ F;, the sequence (h;) converges uniformly. In fact, let ¢ > 0 and
choose n, > k,1/e. If i,j > n,, then for z ¢ F we have |h;(z) — h;(z)| <
1/n, < e. It follows now that the lim h;(z) exists for every z ¢ F = () F,.
Define f on X by f(z) = limh;(z) when z ¢ F and arbitrarily when z € F.
We will show that f, — f in measure. Indeed, let p € cs(E), & > 0 and € > 0.
Set

Br=A{z:|/falz) - f(z)| 2 a}.
Choose 7 > 1/e such that p < p,, and n, > 1/a. Since h; — f uniformly on

Fy; , there exists j > r,1/o such that |hj(z) — f(z)| < a for all z € F¢ . Let
now n > n;. Then B, C G1|JG,, where

Gr=A{2:|fa(z) = fo, (2)| 2 @}, and Go={z:|fn;(z) - f(z)| > a}.
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Moreover Gy C F,,, and so
my(G2) < mp(Frn,) <my, (F,) <1/r<e.

Also
G1 CH{z : |falz) = fo;(2)] 2 1/5}
and thus
my(G) < my,, (G1) <1/j <

Hence m;(B,) < € for all n > n;. This clearly completes the proof.
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